Page 36 - RMGO 1
P. 36

˘
                                                              ˘
            36                                      Costel BALCAU s , i Mihai Florea DUMITRESCU
            s , i, analog,
                                        √
                                      n  2n  n     ln(2π) +  1     ln(2π)
                                  lim        e  2n  12n 2  − 1 =    ,
                                 n→∞    e                       2e
            aplicˆand criteriul cles ,telui obt , inem relat , ia din enunt , .



            Aplicat , ii
                      √
                       n              √       2n      2n
                        n!         1        n   n       n     1
                                                       √
                                              √
               1) lim      = lim      n  n! −      +       =   .
                 n→∞ n       n→∞ n            e        e      e
                                                                 √
                       √                  √      √
                             n                 n  2n  n       n  2n  n  n
               2) lim   n  n! −  = lim   n  n! −      + lim         −
                 n→∞          e    n→∞           e      n→∞      e     e
                                                             ln n
                    ln(2π)      n     ln n     ln(2π)       e 2n − 1 n ln n
                 =        + lim    e 2n − 1 =        + lim         ·   ·
                     2e     n→∞ e               2e     n→∞    ln n   e  2n
                                                              2n
                    ln(2π)      ln n
                 =        + lim     = +∞.
                     2e     n→∞ 2e
                                                                √
                                                    p           n
               3) Pentru s ,irul lui Traian Lalescu L n =  n+1  (n + 1)! −  n!, n ≥ 2, avem
                                                     √
                                                   2n+2           √      √
                                 p          (n + 1)   n + 1      n     n  2n  n
                        L n =  n+1  (n + 1)! −               −     n! −
                                                   e                     e
                                         √
                                       2n+2          √
                                (n + 1)    n + 1   n  2n  n
                             +                  −         ,
                                        e            e
            deci
                                                            √
                                                          2n+2         √
                            ln(2π)   ln(2π)        (n + 1)    n + 1  n  2n  n
                   lim L n =       −       + lim                   −
                   n→∞        2e       2e    n→∞          e            e
                                                 √
                                   √           2n+2
                                 n  2n  n  (n + 1)  n + 1
                          = lim                 √       − 1
                            n→∞    e         n  2n  n
                                 n     ln  n+1  +  ln(n+1) −  ln n
                          = lim     e   n   2n+2  2n − 1
                            n→∞ e
                                 n e ln  n+1 +  ln(n+1) −  ln n     n + 1  ln(n + 1)  ln n
                                                  2n − 1
                                            2n+2
                                        n
                          = lim    ·                      ln     +          −
                            n→∞ e   ln  n+1  +  ln(n+1)  −  ln n  n  2n + 2    2n
                                       n     2n+2    2n

                            1            n + 1  ln(n + 1)  ln n
                          =   · lim n ln      +          −
                            e  n→∞         n      2n + 2    2n
                                               n
                            1               1     n ln(n + 1) − (n + 1) ln n
                          =   · lim  ln 1 +     +
                            e  n→∞          n             2(n + 1)

                            1   1           n      n + 1     ln n      1
                          =   +   · lim          ln      −          =   .
                            e   e  n→∞   2(n + 1)    n     2(n + 1)    e
                                                                 (n + 1) 2   n 2
               4) Pentru s ,irul lui Dumitru M. B˘atinet ,u-Giurgiu b n =  p  − √ , n ≥ 2,
                                                                   (n + 1)!    n!
                                                               n+1           n
   31   32   33   34   35   36   37   38   39   40   41