Page 38 - RMGO 6
P. 38
˘
38 Dorin MARGHIDANU
On the other hand, using n times the right inequality from Lemma 1, we obtain
n n n
1 X x k |x k | − x k+1 |x k+1 | 1 X X
· ≤ · (|x k | + |x k+1 |) = |x k | .
2 x k − x k+1 2
k=1 k=1 k=1
Remark 2. For n = 2 and n = 3 in (5), we regain the inequalities (1) and (4),
respectively.
References
[1] D. M˘arghidanu, A refinement of modulus inequality, proposed problem in Short
Mathematical Idea, https://www.facebook.com/photo/?fbid=6474936872565366&
set=gm.2819058648230558&idorvanity=370199313116516
[2] D. M˘arghidanu, A refinement of modulus inequality (the general case), proposed
problem in Mathematical Inequalities, https://www.facebook.com/photo?fbid=
6499590363433350&set=gm.3461865910768112&idorvanity=1486244404996949