Page 37 - RMGO 6
P. 37

A refinement of the Modulus inequality                                      37


                Next we derive an extension of inequality (1), even with its help, for the case
            of three variables.

            Proposition 1 (A refinement of Modulus inequality in three variables,
            [1], b)). For any x, y, z ∈ R with x 6= y 6= z 6= x, the following inequalities hold
                           1  Å  x |x| − y |y|  y |y| − z |z|  z |z| − x |x|  ã
             |x + y + z| ≤  ·             +             +              ≤ |x|+|y|+|z| . (4)
                           2      x − y        y − z         z − x
            Proof. Using the Modulus inequality and the left inequality from (1), we have

                                   1
                      |x + y + z| =  · |(x + y) + (y + z) + (z + x)|
                                   2
                                   1
                                ≤    · (|x + y| + |y + z| + |z + x|)
                                   2
                                      Å                                       ã
                                   1    x |x| − y |y|  y |y| − z |z|  z |z| − x |x|
                                ≤    ·             +            +              .
                                   2      x − y         y − z         z − x
                On the other hand, using the right inequality from (1), we obtain

                             1  Å x |x| − y |y|  y |y| − z |z|  z |z| − x |x|  ã
                               ·             +            +
                             2      x − y         y − z         z − x
                                 1
                               ≤   · [(|x| + |y|) + (|y| + |z|) + (|z| + |x|)]
                                 2
                               = |x| + |y| + |z| .


                Similarly, we obtain the following general refinement.

            Proposition 2 (A refinement of Modulus inequality - the general case,
            [2]). For any x 1 , x 2 , . . . , x n ∈ R with x 1 6= x 2 6= . . . 6= x n 6= x 1 , the following
            inequalities hold

                             n            n                         n

                            X         1  X  x k |x k | − x k+1 |x k+1 |  X
                               x k  ≤  ·                        ≤     |x k | ,         (5)

                                      2

                                                 x k − x k+1
                            k=1          k=1                       k=1
            where x n+1 = x 1 .
            Proof. After an easy preparation, using n times the Modulus inequality and then
            the left inequality from Lemma 1, we have

                          n
                         X        1
                            x k  =  · |(x 1 + x 2 ) + (x 2 + x 3 ) + . . . + (x n + x n+1 )|


                                  2

                         k=1
                                  1
                                ≤   · (|x 1 + x 2 | + |x 2 + x 3 | + . . . + |x n + x n+1 |)
                                  2
                                      n
                                  1  X   x k |x k | − x k+1 |x k+1 |
                                ≤   ·                       .
                                  2           x k − x k+1
                                     k=1
   32   33   34   35   36   37   38   39   40   41   42