Page 36 - RMGO 6
P. 36

˘
            36                                                        Dorin MARGHIDANU

                III. 1) If x ≥ 0, y < 0, x + y ≥ 0, then the given inequalities become
                                 2
                                x + y 2
                                                                  2
                                                                             2
                                                             2
                                                    2
                                                        2
                       x + y ≤         ≤ x − y ⇔ x − y ≤ x + y ≤ (x − y) ,
                                 x − y
            obviously true.
                III. 2) If x ≥ 0, y < 0, x + y < 0, then the given inequalities become
                                 2
                               x + y 2
                                                                      2
                                                                 2
                                                       2
                                                                                2
                                                            2
                    −(x + y) ≤         ≤ x − y   ⇔ −x + y ≤ x + y ≤ (x − y) ,
                                x − y
            obviously true.
                IV. 1) If x < 0, y ≥ 0, x + y ≥ 0, then the given inequalities become
                                   2
                                                                2
                                  x + y 2                     x + y  2
                        x + y ≤ −         ≤ −x + y ⇔ x + y ≤          ≤ y − x
                                   x − y                       y − x
                                                                 2
                                       2
                                            2
                                                      2
                                                 2
                                   ⇔ y − x ≤ x + y ≤ (y − x) ,
            obviously true.
                IV. 2) If x < 0, y ≥ 0, x + y < 0, then the given inequalities become
                                                                   2
                                   2
                                −x − y  2                         x + y 2
                     −(x + y) ≤           ≤ −x + y ⇔ −(x + y) ≤           ≤ y − x
                                  x − y                            y − x
                                        2
                                                      2
                                                 2
                                                                 2
                                            2
                                   ⇔ x − y ≤ x + y ≤ (y − x) ,
            obviously true.
                Resuming carefully the above proof, we obtain the following reformulation of
            the statement from the Lemma 1.
            Corollary 1. a) If the real numbers x and y have the same sign and x 6= y, then
                                            x |x| − y |y|
                                   |x + y| =            = |x| + |y| .                  (2)
                                               x − y
                b) If the real numbers x and y have different signs, then
                                            x |x| − y |y|
                                   |x + y| <            < |x| + |y| .                  (3)
                                               x − y
            Remark 1. As an illustration of relations (2) and (3), for x = −5 and y = −3
                                            x |x| − y |y|  −5 |−5| + 3 |−3|  −25 + 9
            we have |x + y| = |−5 − 3| = 8,            =                  =           = 8,
                                               x − y          −5 + 3           −2
            |x| + |y| = |−5| + |−3| = 8,
                                                                            x |x| − y |y|
            and for x = 5 and y = −3 we have |x + y| = |5 − 3| = 2,                     =
                                                                              x − y
             5 |5| + 3 |−3|  34
                         =     = 4,25, |x| + |y| = |5| + |−3| = 8 s , i 2 < 4,25 < 8.
                5 + 3       8
   31   32   33   34   35   36   37   38   39   40   41