Page 44 - RMGO 5
P. 44

44                                                             Mih´aly BENCZE


            Theorem 2. In any convex polygon A 1 A 2 . . . A n hold the inequalities:

                  X          a 1            n
               1.                      ≥
                      a 2 + a 3 + . . . + a n  n − 1
                  (Nesbitt’s Inequality);

                              a 1
                  X                           n
               2.                        ≥
                      −a 1 + a 2 + . . . + a n  n − 2
                  (another generalization of problem M 7, Kvant);
                                           n
                                          X
                                             a k
                  X          a 2 1        k=1
               3.                      ≥        ;
                      a 2 + a 3 + . . . + a n  n − 1
                                             n
                                            X
                                               a k
                  X           a 2           k=1
               4.              1         ≥        .
                      −a 1 + a 2 + . . . + a n  n − 2
                            n
                           X
            Proof. Let S =     a k .
                           k=1
                                         x                               2S
                                                               00
                1) The function f(x) =       is convex because f (x) =         > 0. Using
                                       S − x                          (S − x) 3
            the Jensen’s Inequality holds the result.
                                           x                                  4S
                                                                   00
                2) The function g(x) =          is convex because g (x) =            > 0.
                                        S − 2x                             (S − 2x) 3
            Using the Jensen’s Inequality holds the result.
                3) By Cauchy-Schwarz Inequality we get

                                                n                   n             n
                                                    ! 2                  ! 2
                                               X                   X            X
                                                  a k                  a k          a k
               X          a 2 1                k=1                 k=1          k=1
                                    ≥ X                       =         n     =       .
                   a 2 + a 3 + . . . + a n  (a 2 + a 3 + . . . + a n )  X        n − 1
                                                                (n − 1)    a k
                                                                       k=1

                4) By Cauchy-Schwarz Inequality we get

                                                n                     n            n
                                                     ! 2                   ! 2
                                               X                     X            X
                                                   a k                   a k          a k
             X           a 2
                          1                    k=1                   k=1          k=1
                                    ≥ X                        =          n     =       .
                 −a 1 + a 2 + . . . + a n  (−a 1 + a 2 + . . . + a n )   X        n − 2
                                                                  (n − 2)    a k
                                                                         k=1
   39   40   41   42   43   44   45   46   47   48   49