Page 45 - RMGO 5
P. 45

Some identities and inequalities in triangle                               45


            Theorem 3. In any triangle ABC hold the inequalities:

                  3   X    a       X     a + b
               1.   +          ≥ 2              ;
                  2       b + c        a + b + 2c

                      X      a       X   a + b
               2. 3 +              ≥          ;
                         b + c − a        c
                  a + b + c  X    a 2    X    (a + b) 2
               3.          +          ≥               ;
                      2          b + c       a + b + 2c

                                     a 2      1    (a + b) 2
                             X                  X
               4. a + b + c +              ≥               .
                                 −a + b + c   2        c
                                          x                     x                     x 2
            Proof. The functions f(x) =       (for 1.), g(x) =       (for 2.), h(x) =
                                        k − x                 k − 2x                k − x
                              x 2
            (for 3.), m(x) =       (for 4.) where k = a + b + c are convex, and we apply the
                            k − 2x
            Popoviciu’s Inequality.


            References


             [1] Octogon Mathematical Magazine (1993-2021).
   40   41   42   43   44   45   46   47   48   49   50