Page 41 - RMGO 5
P. 41

Some identities and inequalities in triangle




            Mih´aly BENCZE       1



                In this paper we present some new inequalities in triangle. We starting with a
            well-known problem.

            Problem (M 7, Kvant). In any triangle ABC holds the inequality

                                          X       a
                                                       ≥ 3.
                                              b + c − a
            Solution. If 2a = y + z, 2b = z + x, 2c = x + y then


                      X      a       1  X  y + z   1  X   x    y     1  X
                                   =             =          +     ≥       2 = 3.
                          b + c − a  2       x     2      y    x     2
             In this paper we give another proof and another relations, inequalities and
            generalizations.

            Theorem 1. In any triangle ABC we have the relations:


                  X    1      4R + r
               1.          =        ;
                      s − a     sr
                  X        1          1
               2.                  =    ;
                      (s − a)(s − b)  r 2
                                         2
                  X      1      (4R + r) − 2s 2
               3.             =                 ;
                                       2 2
                      (s − a) 2       s r
                                         2
                                              2
                            1           s − 2r − 8Rr
                  X
               4.                    =                ;
                                              2 4
                            2
                      (s − a) (s − b) 2      s r
                  X    a      2(2R − r)
               5.          =           ;
                      s − a       r
                  Y    a     4R
               6.          =    ;
                     s − a    r
                        a(s − a)      2(2R − r)
                  X
               7.                  =           ;
                      (s − b)(s − c)      r
               1
                Profesor dr., Bras , ov, benczemihaly@gmail.com
                                                  41
   36   37   38   39   40   41   42   43   44   45   46