Page 43 - RMGO 5
P. 43

Some identities and inequalities in triangle                               43

                                                                    2
                  8R − 7r    X             1                2R − r
               4.         ≤                            ≤             ;
                      2 3
                                           2
                   16s r         (b + c − a) (a + c − b) 2   4sr 2
                  X      a
               5.              ≥ 3,
                      b + c − a
                  that is Problem M 7 from Kvant;
               6. abc ≥ (a + b − c)(b + c − a)(c + a − b);

                  X       a(b + c − a)
               7.                          ≥ 3;
                      (a − b + c)(a + b − c)
                  8R − 7r    X        b + c − a         (2R − r) 2
               8.         ≤                          ≤           ;
                    2sr          (a − b + c)(a + b − c)    2sr 2
                                                                         2
                                                                                    2
                        2
                                   2
                  4r(4R + 6Rr − r )     X   (b + c − a)(a − b + c)  4r(5R + 3Rr + r )
               9.                     ≤                          ≤                    ;
                          sR                         c                     sR
                   9   X             a             9R
              10.    ≤                          ≤
                  2s       (a − b + c)(a + b − c)  4sr
                  (another refinement of Euler’s inequality);
                  3r   X            a 2            3
              11.    ≤                          ≤
                  R        (a − b + c)(a + b − c)  2
                  (another refinement of Euler’s inequality);

                  X      a 2     4s(R − r)
              12.              ≥           ≥ 2s;
                      b + c − a      R
                                                           2
                  4R − 5r    X       (b + c − a) 2      4R − 8Rr + 3r  2
              13.         ≤                          ≤                  ;
                     r           (a − b + c)(a + b − c)        r 2
                                                         2
                  2R − r    X           ab             R − Rr + r  2
              14.        ≤                          ≤               ;
                     r         (b + c − a)(a − b + c)       r 2
                                                            2
                                                  2
                  2(2R − r)   X   b + c − a   2(R − Rr + r )
              15.           ≤              ≤                  ;
                      R               a             Rr
                  6r   X   (b + c − a)(a − b + c)  2R − r
              16.    ≤                          ≤        .
                  R                 ab               r
            Proof. In Theorem 1 we use the Euler’s Inequality R ≥ 2r and the Gerretsen’s
            Inequalities
                                                       2
                                                                   2
                                           2
                                                2
                                 16Rr − 5r ≤ s ≤ 4R + 4Rr + 3r .
            We proof only the inequality 5), the another inequalities having similar proofs:
                                 X      a       2R − r    4r − r
                                              =         ≥        = 3.
                                     b + c − a     r         r
            This is a new proof of Problem M 7, Kvant.
   38   39   40   41   42   43   44   45   46   47   48