Page 37 - RMGO 5
P. 37

O extindere a unei probleme din Mathematical Reflections nr. 6/2021         37

                                      BA 0      CB 0     AC  0
            Demonstrat¸ie. Not˘am x =     , y =     , z =     (coordonatele baricentrice ale
                                                           0
                                                 0
                                        0
                                      A C       B A      C B
            punctului P), unde xyz = 1. Fie C 1 s , i B 1 mijloacele segmentelor CP, respectiv BP.
            Not˘am {β} = BC 1 ∩ AC, {γ} = CB 1 ∩ AB, {D} = AG a ∩ BC, {E} = BG b ∩ CA,
            {F} = CG c ∩ AB,
                                                                             0
                Folosind Relat ,ia lui Van Aubel s , i Teorema lui Menelaus ˆın 4ACC cu transver-
            sala B − C 1 − β, obt , inem

                        CP     1        CC 1    xy + 1    C 1 C      xy + 1
                             =   + y ⇒       =         ⇒        =            ;
                        PC 0   x        PC  0     2x      C 1 C 0  xy + 2x + 1
                          BC 0  βA   C 1 C        βA    (z + 1)(xy + 2x + 1)
                              ·     ·      = 1 ⇒     =                      .
                          BA    βC   C 1 C 0      βC           xy + 1
                     γA    (y + 1)(xz + 2z + 1)
            Analog,     =                     .
                     γB         y(xz + 1)
                Aplicˆand Teorema lui Ceva ˆın triunghiul ABC cu cevianele AD, Bβ, Cγ
                        DB βC      γA
            deducem c˘       ·    ·    = 1, deci
                      a
                        DC    βA γB
                  DB     (z + 1)(xy + 2x + 1)y(xz + 1)   (xy + 2x + 1)(z + 1)(y + 1)
                      =                               =
                  DC      (y + 1)(xz + 2z + 1)(xy + 1)   (y + 1)(xz + 2z + 1)(xy + 1)
                          z(xy + 2x + 1)(z + 1)   z(xy + 2x + 1)
                      =                        =                .
                         (xz + 2z + 1)(xyz + z)    xz + 2z + 1


                                                            EC     FA
                Scriem dou˘ relat , ii similare pentru rapoartele  s , i  :
                          a
                                                            EA     FB
                             EC     x(yz + 2y + 1) FA     y(xz + 2z + 1)
                                 =                ,     =               .
                             EA      xy + 2x + 1    FB      yz + 2y + 1

                                                                     a
                                                                   a
            Cum xyz = 1, aplicˆand reciproca Teoremei lui Ceva rezult˘ c˘ dreptele AG a , BG b ,
            CG c sunt concurente.

            Bibliografie


             [1] https://faculty.evansville.edu/ck6/encyclopedia/etc.html
   32   33   34   35   36   37   38   39   40   41   42