Page 32 - RMGO 5
P. 32

32                                      Rezolvarea problemelor din num˘arul anterior

                                  ∗
                                          ∗
            MGO 158. Fie n ∈ N , a ∈ R s , i b > 0. Calculat ,i integrala
                                  Z   2n−1       2n−1
                                     x    (x + a)
                                                      dx, x ∈ (0, ∞).
                                     (x + a) 4n  + bx 4n
                                                                      Daniel Jinga, Pites , ti

            Solut ,ie. Notˆand cu I integrala dat˘a, avem
                                   a                1        a
                                       2n−1                      2n−1
                     Z  x 4n−2  1 +              Z   2  · 1 +
                I =                x        dx =    x        x       dx
                                 a    4n                  a    4n
                       x 4n  1 +       + b            1 +      + b
                                 x                        x
                                                                                 0
                                    0
                                  a        a
                                              2n−1                        a    2n
                         Z   1 +       1 +                     Z      1 +
                      1          x         x              1               x
                  = − ·                           dx = −      ·                    dx
                      a              a  4n               2an            a    2n  2
                                 1 +       + b                      1 +        + b
                                     x                                  x
                                           a              √
                                               2n
                                       1 +                                  2n
                        1    1             x                b        (x + a)
                  = −      · √ · arctg    √      + C = −      · arctg     √   + C.
                      2an     b             b            2abn         x 2n  ·  b
            MGO 159. Fie f : [−1, 1] → R o funct ,ie de dou˘a ori derivabil˘a, cu derivata a
                                                                     a
            doua continu˘a, astfel ˆıncˆat f(−1) = f(1) = 0. Demonstrat ,i c˘ are loc inegalitatea
                                  1  Z  1        2
                                           00
                                                               2
                                    ·     f (x)   dx ≥ max f (x).
                                  6   −1               x∈[−1,1]
                                                                   Florin St˘anescu, G˘aes , ti

                                          a
                                               a
            Solut ,ie. Concluzia fiind evident˘ dac˘ funct , ia f este identic nul˘a, presupunem ˆın
                                                                                   2
            continuare c˘a f nu este identic nul˘a. Atunci exist˘a c ∈ (0, 1) a.ˆı.  max f (x) =
                                                                           x∈[−1,1]
                                                             0
                                              0
              2
            f (c) > 0. Astfel 0 = f 2    0  (c) = 2f (c)f(c), deci f (c) = 0.
                                             c                                c
                                           Z                                Z
                                                                       0
                                                                                 0
                                                       00
                Integrˆand prin p˘art , i obt , inem  (1 + x) f (x)dx = (1+c)f (c)−  f (x)dx =
                                            −1                               −1
            −f(c), deci aplicˆand Inegalitatea Cauchy-Buniakowski-Schwarz avem
                              c                       c               c         2
                           Z                     2  Z               Z
                                                                          00
                                        00
                                                              2
                    2
                  f (c) =      (1 + x) f (x) dx   ≤     (1 + x) dx ·     f (x)  dx,
                             −1                      −1              −1
                                                    2
                               Z  c              3f (c)
                                     00
            de unde rezult˘ c˘     f (x)   2  dx ≥     3  .
                          a
                             a
                                −1               (1 + c)
                                    1                            1                3f (c)
                                                                                    2
                                  Z                            Z
                                                                     00
                                              00
                                a
                Analog obt , inem c˘  (1 − x) f (x)dx = −f(c) s , i  f (x)  2  dx ≥     3  .
                                   c                             c               (1 − c)
   27   28   29   30   31   32   33   34   35   36   37