Page 30 - RMGO 5
P. 30

30                                      Rezolvarea problemelor din num˘arul anterior

                                    (xy + yz + zx) 2                    (xy + yz + zx) 2
                                2
                         2
                   2
            deci xy + yz + zx ≥                    . Cum din (1) avem                   >
                                       x + y + z                           x + y + z
             (xy + yz + zx) 2                                           2     2    2
                                                    a
                                                  a
                            = xy + yz + zx, rezult˘ c˘ xy + yz + zx < xy + yz + zx , deci
              xy + yz + zx
                                                   2
                                                               2
                                                         2
                           xy + yz + zx + xyz < xy + yz + zx + xyz ≤ 4.
                                     a
                Ar˘at˘am ˆın continuare c˘ dac˘ x, y, z ≥ 0 verific˘ inegalit˘t , ile xy + yz + zx > 3
                                                            a
                                                                     a
                                          a
            s , i xy + yz + zx + xyz < 4, atunci x + y + z > xy + yz + zx.
                Putem presupune, f˘ar˘ a restrˆange generalitatea, c˘ z ≥ y ≥ x.
                                                                a
                                    a
                                                                                        2
                Din xy + yz + zx > 3 s , i yz < 4 avem 1 < yz < 4. Not˘am y + z = 2s s , i yz = p .
                                                                            4 − p 2
            Atunci 1 < p < 2 s , i p ≤ s. Avem x (y + z + yz) < 4 − yz, deci x <  . Avem
                                                                           2s + p 2
                                                                                    2
            de demonstrat c˘a xy + yz + zx − (x + y + z) ≤ 0, adic˘a x (2s − 1) − 2s + p ≤ 0.
                                                                                      2
                                                                                  4 − p
                                                                        2
            Fix˘am s s , i p s , i consider˘am funct , ia f (t) = t (2s − 1) − 2s + p , t ∈ 0,  .
                                                                                 2s + p 2
            Deoarece 2s − 1 > 0, avem
                                           4 − p      (4 − p )(2s − 1)
                                                2           2
                                                                              2
                         max    f(t) = f            =                 − 2s + p .
                        h      i           2s + p 2       2s + p 2
                      t∈ 0,  4−p 2  )
                          2s+p 2
                                                           2            2
                                                       4 − p      (4 − p )(2s − 1)
                                                                                        2
            Astfel xy+yz+zx−(x+y+z) = f(x) < f                 =                 −2s+p .
                                                      2s + p 2        2s + p 2
                                                     4 − p 2    (2t − 1)
                                                                            2
                Fix˘am p s , i consider˘am funct , ia g (t) =        − 2t + p , t ∈ [p, ∞).
                                                         2t + p 2
                                        2
                       0
                      g (t)    4 − p 2     p + 1
                Avem        =                  − 1, pentru orice t ∈ [p, ∞).
                                        2 2
                        2        (2t + p )
                                                                             2
                                                                   4 − p 2    p + 1
                                               2
                                                          2
                               2
                Cum 0 < 4 − p < 3 s , i 2t + p ≥ 2p + p , avem                     − 1 <
                                                                            2 2
                                                                      (2t + p )
                2
                                                                    2
             3 p + 1                                            3 p + 1
                       − 1, pentru orice t ∈ [p, ∞) . Ar˘at˘am c˘a         − 1 < 0, adic˘a
                                                                       2 2
                   2 2
             (2p + p )                                          (2p + p )
                                        ˆ
                            2
                 4
                                                            0
                       3
            3 < p + 4p + p , adev˘arat. In concluzie avem g (t) < 0 pentru orice t ∈ [p, ∞),

                                      (2 − p)(2p − 1)                   4 − p 2  (2s − 1)
                                                             2
            deci max g(t) = g(p) =                   − 2p + p . Astfel                  −
                 t∈[p,∞)                    p                               2s + p 2
                                     (2 − p) (2p − 1)
                  2
                                                             2
            2s + p = g (s) ≤ g (p) =                 − 2p + p . Ar˘at˘am c˘a g(p) < 0, adic˘a
                                            p
             (2 − p) (2p − 1)                           2
                            < p (2 − p), adic˘a 0 < (p − 1) , adev˘arat.
                   p
                Conform inegalit˘at , ilor demonstrate, rezult˘a c˘a xy + yz + zx − (x + y + z) <
              4 − p 2     (2s − 1)      (2 − p) (2p − 1)
                                    2
                                                              2
                             −2s+p ≤                   −2p+p < 0, prin urmare am obt , inut
                 2s + p 2                     p
            x + y + z > xy + yz + zx, contradict , ie cu (1). Demonstrat , ia este complet˘a.
   25   26   27   28   29   30   31   32   33   34   35