Page 35 - RMGO 3
P. 35

Lema lui Hensel. Aplicat , ii                                              35


              ii) g(X) ≡ g 1 (X) (mod p) s , i h(X) ≡ h 1 (X) (mod p) s , i
              ii) f(X) = g(X)h(X).

            Teorema 3 (Lema lui Hensel, a treia form˘a). Fie f(X) ∈ O p [X]. Dac˘a
            exist˘a α 0 ∈ O p s , i s ≥ 0 astfel ˆıncˆat

                                        f(α 0 ) ≡ 0 ( mod p 2s+1 )
                                          0
                                                           s
                                         f (α 0 ) ≡ 0 ( mod p )
                                         0
                                        f (α 0 ) 6≡ 0 ( mod p s+1 )
            atunci ∃ α ∈ O p astfel ˆıncˆat f(α) = 0 s , i α ≡ α 0 (mod p s+1 ).

            Demonstrat¸ie. Construim prin induct , ie s , irul α 0 , α 1 , . . . , α n , . . . definind

                                                  f(α n )
                                     α n+1 = α n −      , ∀n ≥ 0.
                                                   0
                                                  f (α n )
            Ar˘at˘am c˘a ∀n ≥ 0 avem

                                  α n ∈ O p , f(α n ) ≡ 0 ( mod p 2s+n+1 )

            s , i
                                        α n ≡ α n−1 ( mod p s+n )
            pentru n ≥ 1 (adev˘arat pentru n = 0).

                i) S˘a presupunem n ≥ 0 s , i afirmat , iile verificate pentru respectivul num˘ar.
            Atunci
                                                   0
                                                            0
                         α n ≡ α n−1 ( mod p s+n ) ⇒ f (α n ) ≡ f (α 0 ) ( mod p s+1 ),
                    0
                                                                   0
                             s
                                                                            s
            adic˘a f (α n ) = p · ε n cu ε n unitate ˆın O p (deoarece f (α 0 ) = p · ε). Atunci
            conform relat , iei de recurent , ˘a ce defines , te s , irul, se obt , ine α n+1 ∈ O p s , i
                                      α n+1 ≡ α n ( mod p s+n+1 ).
            Din dezvoltarea polinomului f(X) dup˘a puterile lui X − α n rezult˘a, grupˆand tot , i
            termenii de grad cel put , in doi, identitatea

                                                                    2
                                           0
                         f(X) = f(α n ) + f (α n )(X − α n ) + (X − α n ) · G(X),
                              ˆ
            cu G(X) ∈ O p [X]. Inlocuind X = α n+1 s , i avˆand ˆın vedere relat , ia de recurent , ˘a, se
            obt , ine
                                                        2
                                                f(α n )
                                   f(α n+1 ) =           · G(α n+1 ),
                                                 0
                                                f (α n )
            iar de aici f(α n+1 ) ≡ 0 (mod p 2s+2n+2 ). Prin urmare
                          v p (α n+1 − α n ) → ∞ s , i v p (f(α n )) → ∞ cˆand n → ∞.
   30   31   32   33   34   35   36   37   38   39   40