Page 30 - RMGO 3
P. 30

˘
            30                                        Leonard GIUGIUC and Bogdan SUCEAVA
                                                                   3
                                               h              2(1+t) (1−3t)  i
                                                                                      2
                                                                                3
            Finally, let the function h (x) = x 2  2x − 4 +  s 2 −         = 2x − 4x −
                                                         x         x 3
                  3
             2(1+t) (1−3t)
                 x      + s, ∀x > 0. We have:
                               0
                                                        3
                                              3
                                        4
                             h (x)    3x − 4x + (1 + t) (1 − 3t)
                                   =                              ∀x > 0.
                               2                  x 2
                                                                     3
                                                      4
                                                            3
            Shall study now the polynomial Q (x) = 3x − 4x + (1 + t) (1 − 3t) on (0, ∞).
                             2
                 0
                Q (x) = 12x (x − 1) ∀x > 0, such that Q is strictly decreasing on (0, 1]
                                                                   3
            and strictly increasing on [1, ∞). But Q (1) = (1 + t) (1 − 3t) − 1 ≤ 0. So
            that Q has a unique root t 1 in (0, 1] and a unique root t 2 in [1, ∞), because
                            3
            Q (0 + ) = (1 + t) (1 − 3t) > 0 and Q (∞) = ∞ > 0. Also, because 1+t ≥ 1 is root
            for Q, we deduce that t 2 = 1 + t. We form the Rolle’s sequence for the function h
            thus: 0 + < t 1 ≤ 1+t < ∞. Since h (0 + ) = −∞ < 0, h (∞) = ∞ > 0 and h admits
            at least 3 positive roots, by a consequence of Rolle’s Theorem we deduce that
                                                                                 2
            h (t 1 ) ≥ 0 and h (1 + t) ≤ 0. By h (1 + t) ≤ 0 we obtain that s ≤ 4(1 + t) (1 − 2t).
            Let’s note that if a = b = c = 1 + t and d = 1 − 3t, then a + b + c + d = 4,
                          3                                           2
            abcd = (1 + t) (1 − 3t) and abc + abd + acd + bcd = 4(1 + t) (1 − 2t). So indeed,
                                                 2
            max (abc + abd + acd + bcd) = 4(1 + t) (1 − 2t).

                                           2
                                                                                 2
                By Claim 4, (a + b + c + d) + k   abc+abd+acd+bcd  ≥ 16 + k(1 + t) (1 − 2t)
                                                     a+b+c+d
                 (16+k)(1+t)(1−3t)  (16+k)(a+b+c+d)abcd
            and                 ≥                   , with equality for a = b = c = 1 + t and
                      1−2t          abc+abd+acd+bcd
                                                     2
            d = 1 − 3t, so from (2) we get 16 + k(1 + t) (1 − 2t) ≥  (16+k)(1+t)(1−3t) . We have:
                                                                      1−2t
                         2

            16 + k(1 + t) (1 − 2t) ≥  (16+k)(1+t)(1−3t)  ∀t ∈ 0,  1     ⇔  48t 2  ≥ −k (1 + t) ·  4t 3
                                          1−2t               3     1−2t               1−2t
                    1       48                1                        48
            ∀t ∈ 0,    ⇔         ≥ −k ∀t ∈ 0,    . Hence −k ≤   inf        = 27.
                    3     4t(1+t)             3                    1  4t(1+t)
                                                              t∈(0, )
                                                                   3
                In conclusion, if −27 ≤ k < −16 then (2) holds for all a, b, c, d > 0 and hence
                                                                             1
            (1) holds for all a, b, c, d > 0 satisfying a + b + c + d =  1  +  1  +  1  + .
                                                                 a   b   c   d
                                                4
                Let k < −27. We define on (0, ∞) the function
                                                                (16+k)(a+b+c+d)abcd
                                        2
            ϕ (a, b, c, d) = (a + b + c + d) + k  abc+abd+acd+bcd  −              .
                                                  a+b+c+d         abc+abd+acd+bcd
            Then lim ϕ (1, 1, 1, x) = 9 +  k 3  < 0 ⇒ ∃x > 0 for which ϕ (1, 1, 1, x) < 0 ⇒
                  x&0
            ϕ (α, α, α, αx) < 0 ∀α > 0. Let us find α > 0 for which α + α + α + αx =  1  +  1  +
                                                                                  α   α
                           q             q         q        q          q
             1  +  1  ⇒ α =   3x+1  ⇒ ϕ      3x+1  ,  3x+1  ,  3x+1  , x ·  3x+1  < 0. We
             α   αx          x(x+3)         x(x+3)   x(x+3)   x(x+3)      x(x+3)
                           q                   q
                                                                                     1
                                                                                 1
            set a = b = c =   3x+1  and d = x ·   3x+1  . Then a + b + c + d =  1  + + +  1
                              x(x+3)             x(x+3)                      a   b   c  d
                              2
            and (a + b + c + d) + kabcd < 16 + k.
                In conclusion, the required set of admissible k equals the interval [−27, 48].
   25   26   27   28   29   30   31   32   33   34   35