Page 16 - RMGO 3
P. 16

16                                                       Thanos KALOGERAKIS


            But, from the PDC, PAB triangles’ similarity, we have:
                                          AB     AP     BP
                                              =      =     .                           (2)
                                          CD     CP     DP
            Combining (1), (2) we get (see Figure 2):
                AQ     AB
                                              0
                    =      , that implies {Q, Q } = (A, AB) ∩ (C, CD)
                CQ     CD
                and
                AQ     BP
                                             0
                    =      , that implies {S, S } = (A, PB) ∩ (C, PD).
                CQ     DP























                                               Figure 2
                                        0
                               0
                Both pairs Q, Q and S, S are constructed using the compass alone (four circles
            with known centers and radii).
                                               0
                                                         0
                Moreover the pairs of points Q, Q and S, S belong to the Apollonius circle
            (A, C, k) where k = AP/PC.
            Problem 2 (Figure 3). Given an A-righted triangle ABC, drawn on the plane.
            Using the compass alone, construct the blue semicircles.
            Note: altitude AD is not drawn.
















                                               Figure 3
   11   12   13   14   15   16   17   18   19   20   21