Page 98 - RMGO 2
P. 98

98                                      Rezolvarea problemelor din num˘arul anterior





                                            Clasa a IX-a



                                                   2
                                                               2
            MGO 21. Rezolvat ,i ˆın R × R ecuat ,ia (x − 3x + 3)(y + 5y + 7) = 3(x − 2)(y + 3).
                                      Stelian Corneliu Andronescu s , i Costel B˘alc˘au, Pites , ti

            Solut ,ia 1. Cum x = 2 nu convine, ecuat , ia poate fi rescris˘a sub forma f(x) = g(y),
                                            2
                                           x − 3x + 3                            3y + 9
            unde f : R \ {2} → R, f(x) =              , iar g : R → R, g(y) =            .
                                                                               2
                                              x − 2                           y + 5y + 7
            Avem Im f = (−∞, −1] ∪ [3, ∞) s , i Im g = [−1, 3]. Rezult˘a c˘a f(x) = g(y) = −1
            sau f(x) = g(y) = 3, deci (x, y) ∈ {(1, −4), (3, −2)}.
            Solut ,ia 2 (Leonard Giugiuc, Drobeta Turnu Severin). Notˆand x−2 = a s , i y +3 = b,
                                       2
                                                 2
            ecuat , ia este echivalent˘a cu (a +a+1)(b −b+1) = 3ab. Dac˘a ab ≤ 0, clar nu avem

                                                                  1           1
            solut , ii. Cazul 1: a, b > 0. Obt , inem echivalenta  a +  + 1  b +  − 1  = 3.
                                                                  a           b
                    1              1
            Fie a +   = u + 2 s , i b +  = v + 2. Clar, u, v ≥ 0 s , i ecuat , ia devine uv + u + 3v = 0,
                    a              b
            deci u = v = 0, prin urmare a = b = 1, de unde x = 3, y = −2. Cazul 2: a, b < 0.
            Analog ca ˆın Cazul 1 obt , inem a = b = −1, de unde x = 1, y = −4.
            MGO 22. Ar˘atat ,i c˘a ˆın orice triunghi ascut ,itunghic ABC are loc inegalitatea
                              √                   √           √           √
                  2 (a + b + c) cos A cos B cos C ≤  bc cos A +  ca cos B +  ab cos C

            (notat ,iile fiind cele obis , nuite).

                    Leonard Giugiuc, Drobeta Turnu Severin s , i Cristinel Mortici, Tˆargovis , te
                         √               √               √
            Solut ,ie. Fie  bc cos A = x,  ca cos B = y,   ab cos C = z. Conform Teore-
                             p               √               p
                                 2
                                                2
                                                                2
                                                     2
            mei cosinusului,   y + z 2  = a,   z + x = b,      x + y 2  = c, deci cos A =
                     x 2                          y 2                          z 2
                                                                                          .
             p                  , cos B = p                  , cos C = p
                                              2
                                                           2
                                                      2
                 2
                                                                           2
                                                                               2
                                                                                        2
                                                                                   2
                         2
                              2
                                                   2
                      2
               (z + x )(x + y )             (x + y )(y + z )             (y + z )(z + x )
            Astfel, inegalitatea din enunt , este echivalent˘a cu
                      1                     1                     1             x + y + z
                                                                             ≤           .
             p                  + p                    + p
                                                                      2
                                                                           2
                                                             2
                                                                  2
                                                    2
                              2
                                       2
                                            2
                 2
                      2
                         2
                                               2
               (x + y )(y + z )      (y + z )(z + x )      (z + x )(x + y )       2xyz
                                                           1                    1
                                                                                        =
            Utilizˆand Inegalitatea mediilor avem p   2    2   2    2  ≤ p
                                                    (x + y )(y + z )        (2xy)(2yz)
             √
               xz    x + z                     1            y + x            1
                  ≤        s , i, analog, p               ≤       , p                   ≤
                                                                                2
                                                       2
                                                  2
                                                                                     2
             2xyz    4xyz               (y + z )(z + x )     4xyz     (z + x )(x + y )
                                                                        2
                                          2
                                              2
                                                                            2
             z + y
                  , iar prin adunare obt , inem inegalitatea dorit˘a.
             4xyz
   93   94   95   96   97   98   99   100   101   102   103