Page 97 - RMGO 2
P. 97

Rezolvarea problemelor din num˘arul anterior                               97




                                         ∗
            MGO 18. Determinat ,i x ∈ R astfel ˆıncˆat min |x| ,    1    > x −  1     .


                                                                 x
                                                                            x
                                           Aurel Chirit ,˘a, Slatina s , i Lucian Tut ,escu, Craiova


                           ∗
            Solut ,ie. x ∈ R verific˘a inegalitatea dat˘a dac˘a s , i numai dac˘a |x| > x −  1      s , i

                                                                                     x
                                                                2
                                                             1                       1
              1         1                   1
                > x −     . Dar |x| > x −          2     x −          2     2          ⇔
                                                ⇔ x >             ⇔ x > x − 2 +
             x          x                  x                 x                      x
                                                                                     2
             1 − 2x 2                   √        √                            1      1
                                                                     1
                     < 0 ⇔ x ∈ −∞, −      2  ∪    2 , +∞ = A, iar       > x −      ⇔    >

                                                                    x
               x 2                       2       2                            x      x 2
                      2
                  1       1             1                              √ √
                                2
                                              2
              x −      ⇔     > x −2+      ⇔ x −2 < 0, x 6= 0 ⇔ x ∈ − 2,      2 \{0} = B.
                  x       x 2          x 2
                                                          √             √ √
                                                                √
            Solut , ia problemei este x ∈ A ∩ B, adic˘a x ∈ − 2, −  2  ∪  2  ,  2 .
                                                                2       2
                                                           0
                                                             0
                                                      0
                                                        0
                                                                                     0
                                                                                        0
            MGO 19. Se consider˘a cubul ABCDA B C D s , i punctele M ∈ (A D ),
                                                  0
                                                            0
                                                                          0
                                                                  0
                    0
                      0
            N ∈ (D C ) s , i P ∈ (BC) astfel ˆıncˆat A M = MD , ND = 2NC s , i PC = 3PB.
            S , tiind c˘a AB = a, determinat ,i:
                                          0
                a) Distant ,a de la punctul D la planul (MNP);
                b) Sinusul unghiului dintre planele (ABC) s , i (MNP).
                                                        Mihai Florea Dumitrescu, Potcoava
                                                     0
                              0
                                             0
                                               0
                                   0
                                       0
            Solut ,ie. a) Fie PP kBB , P ∈ (B C ) s , i P Q ⊥ MN, Q ∈ MN. Avem A MNP =
                                                                                       0
                                                         a 2           √
                                                                                      2
                                                                              2
                                                                           0
                                                                                   0
            A A B C D − A MD N − A NC P − A A MP B =       , iar MN =    D M + D N =
                                                     0
                                                   0
                                               0
                                       0
                     0
                   0
                 0
               0
                                         0
                             0
                                                         3                           √
             5a              2 · A MNP  0  4a                     p                 a 41
                       0
                                                                             0
                                                                               2
               , deci P Q =             =    . Rezult˘a c˘a PQ =    PP  02  + P Q =      .
             6                  MN         5                                          5
                                         0
                             A MNP · d(D , (MNP))      A MD N · PP  0
                                                            0
                                                                             0
            Avem V D MNP =                          =               , deci d(D , (MNP)) =
                     0
                                        3          √         3
                                     0
                              0
             A MD N · PP 0   D M · D N · PP  0  2a 41
                  0
                          =                   =        .
                A MNP           MN · PQ           41
                                                       0
                                                         0
                                                                                  0
                                                            0
                b) sin (^ ((ABC), (MNP))) = sin (^ ((A B C ), (MNP))) = sin (^P QP) =
                     √
             PP  0  5 41
                 =       .
             PQ      41
                                          2
                                                   2
                                               2
            MGO 20. Dac˘a a, b, c > 0 s , i a + b + c = 1, demonstrat ,i c˘a are loc inegalitatea
                                      1       1       1       1
                                          +       +       ≤      .
                                     a + b   a + c  b + c   2abc
                                                                   Florin St˘anescu, G˘aes , ti
                                                         2ab        2ac        2bc
            Solut ,ie. Utilizˆand inegalit˘at , i uzuale avem  · c +     · b +      · a ≤
                                                        a + b      a + c       b + c
             a + b    a + c     b + c
                                                                 2
                                                             2
                                                         2
                  · c +     · b +    · a = ab + ac + bc ≤ a + b + c = 1, de unde, ˆımp˘art , ind
              2         2         2
            prin 2abc, obt , inem inegalitatea din enunt , .
   92   93   94   95   96   97   98   99   100   101   102