Page 46 - RMGO 1
P. 46

46                                                              Costel ANGHEL

                  (a) a 7 − a 4 = 3r.
                      a n − a m
                  (b)         = r.
                       n − m
                  (c) a m (n − p) + a n (p − m) + a p (m − n) = 0.

                                                                                      * * *


                                                                 ◦
                                                                              ◦
               4. Se consider˘a triunghiul dreptunghic ABC, m(^A) = 90 , m(^B) = 30 , M mijlocul
                                                   AN                              −−→
                 laturii [BC] s , i N ∈ (AB) astfel ˆıncˆat  = x. Aflat , i x s , tiind c˘a vectorii MN s , i
                 −−→                               AB
                 BC sunt perpendiculari.
                                        Vasile Ienut ,as ,, Baia Mare, Supliment G.M.-B nr. 3/2012




            Clasa a X-a

               1. Ar˘atat , i c˘a dac˘a log  20 = a s , i log  5 = b, atunci 5ab + a − b = 2.
                                  50           40
                                                                        Costel Anghel, Bircii

                                                   2
                                                       2
               2. (a) Ar˘atat , i c˘a dac˘a a, b ∈ R, atunci a + b ≥ 2ab.
                                             2
                                                     2
                                                 2
                  (b) Demonstrat , i inegalitatea a + b + c ≥ ab + bc + ac, ∀ a, b, c ∈ R.
                                               x
                                                    x
                                                          x
                                                               x
                                         x
                                                                     x
                  (c) S˘a se rezolve ecuat , ia 4 + 25 + 49 = 10 + 14 + 35 .
                                                                        Costel Anghel, Bircii
                                              2
               3. Fie α ∈ C o r˘ad˘acin˘a a ecuat , iei z + z + 1 = 0.
                  (a) Calculat , i α 2013 .
                  (b) Determinat , i o ecuat , ie de gradul al II-lea cu coeficient , ii reali care are r˘ad˘acina
                      complex˘a z = 3 − i.
                                                2
                                           4
                  (c) Rezolvat , i ˆın C ecuat , ia z + 2z − 3 = 0.
                                                                    Florea Badea, Scornices , ti


               4. S˘a se demonstreze egalitatea de mai jos, pentru n > 2l:
                                          l−1               2l
                                          X         2  2k  X    k
                                             (n − 2k) A  =    A
                                                       n        n
                                          k=0              k=1
                 .

                                                               Octavian Marinescu-Ghemeci
   41   42   43   44   45   46   47   48   49   50   51