Page 23 - RMGO 6
P. 23

Rezolvarea problemelor din num˘arul anterior                               23

                          −−−→    −−→   −−→        i −−→      j −→     −−→    −−→   −→
            Solut ,ie. Avem P i Q j = P i A + AQ j = −  AB +     AC s , i P i G = P i A + AG =
                                                 2022       2022
                i −−→     2  1 −−→    −→ ä    2022 − 3i−−→    1−→
                               Ä
            −      AB +    ·    AB + AC    =           AB +    AC, deci P i , G s , i Q j sunt
              2022        3  2                 3 · 2022       3
                                             i         j
            coliniare dac˘ s , i numai dac˘ −     =       . Aceast˘ egalitate se poate rescrie,
                        a
                                     a
                                                                 a
                                         2022 − 3i   2022
                         i       j
                                                                          2
                                                                                2
                                                                                        a
            succesiv:        =     , ij −674(i+j) = 0, (i−674)(j −674) = 2 ·337 . Rezult˘
                      i − 674   674
                                                                    2        2         2
             a
            c˘ i − 674, j − 674 ∈ ±1, ±2, ±4, ±337, ±674, ±1348, ±337 , ±2 · 337 , ±4 · 337  .
                Cum i, j ∈ {1, 2, . . . , 2021}, adic˘a i − 674, j − 674 ∈ {−673, −672, . . . , 1347},
            rezult˘a c˘a i − 674 = 674 s , i j − 674 = 674, deci i = j = 1348. Astfel o singur˘a
                   a
                                                                       a
            dreapt˘ P i Q j trece prin G, s , i anume P 1348 Q 1348 (paralela dus˘ prin G la BC).
            MGO 185. Demonstrat ,i c˘a ˆın orice triunghi ABC au loc identit˘at ,ile
                 X    2   3  X    2   X     2  2   9   X   2 2   X     4   9   X   4
                    m =     ·    a ,      m m =      ·    a b ,      m =      ·   a .
                      a
                                                                       a
                                            a
                                              b
                          4                        16                      16
                                                                    Mih´aly Bencze, Bras , ov
                                                                        2
                                                                  2
                                                             P 2b + 2c − a   2
                                                     P    2                      3 P    2
            Solut ,ie. Folosind Formula medianei avem   m =                    =   ·   a ,
                                                          a
                                                                       4         4
                                        2
                                                  2
                                             2
                                                       2
                                   2
                             2
                        P (2b + 2c − a )(2c + 2a − b )
            P    2  2                                        9 P     2 2   2 2    4    4
               m m =                                      =    ·  (4b c +4b a −2b +4c +
                 a
                    b
                                         4                  16
                                                                                    2 2
                                                                          2
                                                                               2
                                                                    P (2b + 2c − a )
                     2 2
              2 2
                                                                4
                                                      2 2
                                        2 2
                                    4
                             2 2
                                               9 P
                                                            P
            4c a −2c b −2a c −2a +a b ) =        ·   a b s , i  m =                     =
                                                                a
                                               16                             4
             1   P                                           9  P
                                4
                                                     2 2
                      4
                                             2 2
                           4
                                                                    4
                                      2 2
               ·   (4b + 4c + a + 8b c − 4b a − 4c a ) =       ·   a .
             16                                             16
                                             Clasa a X-a
                                                                       X      1
            MGO 186. Fie x 1 , x 2 , . . . , x n > 0, n ∈ N, n ≥ 2 s , i m =     . Ar˘atat ,i
                                                                            x i x j
                                                                     1≤i<j≤n
            c˘a
                                                       
                                                          3
                                    X        1        4 m n(n − 1)
                                                    ≤               .
                                         »   3    3
                                            x + x            8
                                  1≤i<j≤n    i    j
                Cˆand are loc egalitatea?
                                                                      Daniel Jinga, Pites , ti
                                   2
                                                       3
                                                            3
            Solut ,ie. Avem (x i − x j ) (x i + x j ) ≥ 0, deci x + x ≥ x i x j (x i + x j ).
                                                       i    j
                Astfel, folosind s , i Inegalitatea Cauchy-Buniakowski-Schwarz, ipoteza s , i Ine-
                                                    1                   1        1
                                          P                     P
            galitatea mediilor obt , inem       »         ≤          √      · √         ≤
                                                   3
                                        1≤i<j≤n   x + x 3 j  1≤i<j≤n   x i x j  x i + x j
                                                   i
   18   19   20   21   22   23   24   25   26   27   28