Page 21 - RMGO 6
P. 21

Rezolvarea problemelor din num˘arul anterior                               21





                                            Clasa a IX-a



            MGO 181. Ar˘atat ,i c˘a pentru orice a, b, c ∈ R astfel ˆıncˆat ab + bc + ca = 3 avem

                               4a + 1         4b + 1        4c + 1
                                         +             +              ≤ 1.
                              2
                                                            2
                                             2
                            7a + 4a + 4    7b + 4b + 4    7c + 4c + 4
                                                          Ardak Mirzakhmedov, Kazahstan
            Solut ,ie. Inegalitatea din enunt , poate fi rescris˘a, succesiv:
                               8a + 2         8b + 2        8c + 2
                                         +             +              ≤ 2;
                                                            2
                                             2
                              2
                            7a + 4a + 4    7b + 4b + 4    7c + 4c + 4
                             8a + 2             8b + 2            8c + 2
                      1 −              + 1 −             + 1 −              ≥ 1;
                                               2
                            2
                                                                 2
                          7a + 4a + 4        7b + 4b + 4       7c + 4c + 4
                          2
                                            2
                                                             2
                        5a + 2(a − 1) 2   5b + 2(b − 1) 2  5c + 2(c − 1) 2
                                       +                 +                ≥ 1.
                            2
                                             2
                                                              2
                         7a + 4a + 4       7b + 4b + 4      7c + 4c + 4
            Este suficient s˘ demonstr˘am ultima inegualitate. Notˆand
                           a
                                            2
                                                       2
                                   2
                        2
                                                                2
                                                                           2
                      5a + 2(a − 1) = x, 5b + 2(b − 1) = y, 5c + 2(c − 1) = z,
                           2
                                             2
                                                               2
                         7a + 4a + 4 = m, 7b + 4b + 4 = n, 7c + 4c + 4 = k,
                                                  x    y  z
                                      a
                                                a
            x, y, z, m, n, k > 0, trebuie s˘ ar˘at˘am c˘  +  +  ≥ 1. Dar, utilizˆand Inegalitatea
                                                  m √  n  √ k  √
                                    x    y    z    ( x +   y +   z) 2
            Cauchy-Schwarz, avem      +    +    ≥                   , deci este suficient s˘a
                                         n
                                    m
                             √     √    √   2  k      m + n + k    √       √       √
            demonstr˘am c˘a    x +   y +  z   ≥ m + n + k, adic˘a 2 xy + 2 yz + 2 zx ≥
                                          √      √      √
            m + n + k − (x + y + z), adic˘a  xy +  yz +   zx ≥ 4(a + b + c) + 3.
                Utilizˆand Inegalitatea Cauchy-Schwarz, avem
                   √      √           »
                                                          2
                                                2
                                   2
                              2
                     xy ≥   5a · 5b +    2(a − 1) · 2(b − 1) ≥ 5ab + 2(a − 1)(1 − b).
                     √                            √
            Analog,    yz ≥ 5bc + 2(b − 1)(1 − c),  zx ≥ 5ca + 2(c − 1)(1 − a), deci prin
                              √      √      √
            adunare obt , inem  xy +   yz +   zx ≥ 3(ab + bc + ca) + 4(a + b + c) − 6, deci
            √      √      √
              xy +   yz +   zx ≥ 4(a + b + c) + 3, ceea ce ˆıncheie demonstrat , ia.
            MGO 182. Fie k > 1 s , i a, b, c, d > 0 astfel ˆıncˆat ab + bc + ca = d. Ar˘atat ,i c˘a
             Ä p          √ ä Ä p          √ ä Ä p          √ ä     3
                                                     2
                                    2
                  2
              a k − 1 +    d   b k − 1 +     d   c k − 1 +    d ≤ k (a + b)(b + c)(c + a).
                Cˆand are loc egalitatea?
                                                                      Daniel Jinga, Pites , ti
   16   17   18   19   20   21   22   23   24   25   26