Page 27 - RMGO 6
P. 27

Rezolvarea problemelor din num˘arul anterior                               27
                                     √
                                              2
                                    n 2      n + 1 − 2n    √   √
                                                                                        2
                                                                  2
                Obt , inem, succesiv:     >    √        ; 2 2n n + 1 > (n + 1)(n − 1) ;
                                                  2
                                    n + 1     2 n + 1
                                                   2
               2
                                                                2
                  2
                                         4
                                                                                 2
                                                                                    2
                                                                          2
                                 2
            8n (n + 1) > (n + 1) (n − 1) ,   (∗); (n + 2n + 1)(n − 2n + 1) < 8n (n + 1);
            Å          ã Å          ã 2    Å       ã
                      1            1             1                 1
              n + 2 +      n − 2 +     < 8 n +      . Notˆand n +    = t, inecuat , ia devine
                      n            n             n                n
                         2
                                                                          2
            (t + 2)(t − 2) < 8t. Cum pentru t > 5 avem t + 2 > t s , i (t − 2) > 8, rezult˘a c˘a
                                                a
            t ≤ 5, deci n ∈ {1, 2, 3, 4}, care verific˘ (∗).
                                            Clasa a XI-a
                                                    Ü                 ê
                                                       2 −1 0      0
                                                       2   5   0   0
            MGO 191. Se consider˘a matricea A =                          .
                                                       0   0   3 −2
                                                       0   0   1   6
                           n
                                   ∗
                Calculat ,i A , n ∈ N .
                                                                                      * * *
                                  Å        ã        Å         ã            Å          ã
                                    2 −1               3 −2                   B   O 2
            Solut ,ie. Notˆand B =           s , i C =         , avem A =               s , i
                                    2   5              1   6                  O 2  C
                        Å  B n     ã
                    n
            astfel A =         O 2  .
                                 n
                          O 2  C
                                                      2
                                   a
                Ecuat , ia caracteristic˘ a matricei B este B −7B+12I 2 = O 2 , cu forma numeric˘
                                                                                        a
                                                                        n
                                                                   n
                                                                                n
             2
            r − 7r + 12 = 0 avˆand r˘ad˘acinile r 1 = 3 s , i r 2 = 4, deci B = 3 B 1 + 4 B 2 , unde
            ß                                              Å          ã
               B 1 + B 2 = I 2                                 2   1
                                          a
                               . Obt , inem c˘ B 1 = 4I 2 − B =         s , i B 2 = B − 3I 2 =
               3B 1 + 4B 2 = B                                −2 −1
            Å          ã            Å        n    n       n    n   ã
               −1 −1                     2 · 3 − 4       3 − 4
                                n
                         , deci B =         n       n     n      n   .
                2   2                  −2 · 3 + 2 · 4  −3 + 2 · 4
                                                       n
                                            n
                                     Å  2 · 4 − 5 n  2 · 4 − 2 · 5 n  ã
                                 n
                Analog obt , inem C =      n    n      n      n    s , i astfel
                                        −4 + 5      −4 + 2 · 5
                       Ü        n    n        n    n                             ê
                             2 · 3 − 4       3 − 4          0            0
                                             n
                                n
                          −2 · 3 + 2 · 4 n  −3 + 2 · 4 n    0            0
                  n
                 A =                                        n    n     n       n    .
                                 0              0       2 · 4 − 5   2 · 4 − 2 · 5
                                                                       n
                                                           n
                                 0              0       −4 + 5  n   −4 + 2 · 5 n
            MGO 192. Ar˘atat ,i c˘a pentru orice a, b, c ∈ C, exact unul dintre sistemele
                                                       
                                ax + by + cz = 0        ax + 2y = 1
                                                       
                                  2x + 3y + 4z = 0        bx + 3y = 1
                                                       
                                                    s , i
                                x + y + z = 1           cx + 4y = 1
                                                       
                                                       
                                  x, y, z ∈ C             x, y ∈ C
   22   23   24   25   26   27   28   29   30   31   32