Page 58 - RMGO 2
P. 58

58                                                              Florea BADEA

            Clasa a X-a


                                                                                    ∗
               1. Fie funct , iile f, g : R → R, f(x) = ax + b s , i g(x) = bx + a, a, b ∈ R . S˘a
                  se arate c˘a reprezent˘arile grafice ale funct , iilor fog −1  s , i gof  −1  nu pot fi
                  perpendiculare.
                                                        Mihai Florea Dumitrescu, Potcoava


               2. S˘a se determine suma numerelor z ∈ C, |z| = 1 care satisfac condit , ia
                               2
                    2
                  |z + z · z + z | = 1.
                                                                                      * * *
                                                                       x
                                                                              x
               3. (a) S˘a se determine num˘arul real m, astfelˆıncˆat ecuat , ia 9 −m·3 −m+8 = 0
                       s˘a aib˘a o singur˘a solut , ie real˘a.
                                                               x
                                               x
                   (b) S˘a se rezolve ecuat , ia 9(27 + 27 −x ) − 73(3 + 3 −x ) = 0.
                                                                 Iuliana Tras , c˘a, Margineni

               4. S˘a se demonstreze identitatea
                                                        2
                                k   k+1          C  k                          C  k  ·C  k+1
                   1 + (k + 1) ·  C n +C n  −  n−k+1  ·  n+1  = (n − k + 1) · (k + 1) ·  n+1  n+1  .
                                                                                    k 2
                                  C n k    k+1   C  k+1                           (C n )
                                                   n+1
                                                            Octavian Marinescu-Ghemeci


            Clasa a XI-a


                                                                  1 1             1 1
                  ˆ
               1. In mult , imea M 2 (R) se consider˘a matricele A =     s , i B =       .
                                                                  0 1             0 3
                                                                               ∗
                                            n
                                       n
                  Ar˘atat , i c˘a matricea A + B este inversabil˘a pentru orice n ∈ N .
                                                        Mihai Florea Dumitrescu, Potcoava

                                                                   471 600
                                                             3
               2. Determinat , i matricea A ∈ M 2 (R), s , tiind c˘a A =       , tr (A) = 9
                                                                    75   96
                         2
                  s , i tr (A ) = 69.
                                      Daniela Haret, Br˘aila, Supliment G.M.-B nr. 12/2013

                                                                x ln(x + e), x ∈ (0, ∞)
                                               ∗
               3. Consider˘am funct , iile f, g, h : R → R, f(x) =                       ,
                                                                [2x]        x ∈ (−∞, 0)

                            x ln x,  x ∈ (0, ∞)          2x sin x
                  g(x) =                        , h(x) =        , unde [x] reprezint˘a partea
                           [x] + 1 x ∈ (−∞, 0)           1 + x 2
                  ˆıntreag˘a a num˘arului x.
                   (a) Studiat , i existent , a limitelor funct , iilor f, g, h ˆın x 0 = 0.
                   (b) Calculat , i lim (f(x) − g(x)) s , i lim (f(x) − g(x)).
                                x→∞                 x→−∞
   53   54   55   56   57   58   59   60   61   62   63