Page 93 - RMGO 3
P. 93

Probleme propuse                                                           93


            MGO 107. Fie a > 0, a 6= 1. Rezolvat , i ˆın mult , imea numerelor reale ecuat , ia
                                                                2
                               log (x − 2a − 1) = log 2a+1 (2x + 2a − 1).
                                  a
                                                                    Marin Chirciu, Pites , ti

            MGO 108. Fie numerele reale a, b s , i c astfel ˆıncˆat

                               th (a)th (b) + th (b)th (c) + th (c)th (a) = 1

                            x
                           e − e −x
            (unde th (x) =          reprezint˘a tangenta hiperbolic˘a a num˘arului real x).
                            x
                           e + e −x
                a) Demonstrat , i c˘a a, b, c < 0 sau a, b, c > 0.

                                        1   2 + th (a) + th (b) + th (c) + th (a)th (b)th (c)
                b) Ar˘atat , i c˘a a + b + c =  ln                                       .
                                        2   2 − th (a) + th (b) + th (c) + th (a)th (b)th (c)
                                 Michel Bataille, Frant , a s , i Leonard Mihai Giugiuc, Romˆania
                                        ∗
            MGO 109. Fie z 1 , z 2 , z 3 ∈ C astfelˆıncˆat |z 1 +z 2 | = |z 1 |+|z 2 |, |z 1 +z 3 | = |z 1 |+|z 3 |
            s , i z 2 + z 3 = 2z 1 . Determinat , i mult , imea tuturor valorilor posibile pentru num˘arul
             z 2 · z 2 + z 3 · z 3
                          .
                 z 1 · z 1
                                                        Mihai Florea Dumitrescu, Potcoava

            MGO 110. Rezolvat , i ˆın mult , imea numerelor reale ecuat , ia
                                            2
                                                             2
                                                    2
                                    2
                                 cos x + cos 2x · sin 3x + sin 4x = 1.
                                                                      Daniel Jinga, Pites , ti





                                            Clasa a XI-a



                                                      6
            MGO 111. Fie A ∈ M n (C) astfel ˆıncˆat A = A + I n . Demonstrat , i c˘a matricea
              2
            A + A + I n este inversabil˘a.
                                                                Cristinel Mortici, Viforˆata

                                      ∗
            MGO 112. Fie a, b ∈ C astfel ˆıncˆat a 6= ±b s , i A, B ∈ M 4 (C) astfel ˆıncˆat
            det(aAB + bBA) = det(aBA + bAB). Demonstrat , i c˘a


                 det (x + a)AB + (b − x)BA = det (x + a)BA + (b − x)AB , ∀x ∈ C.
                                                                      Daniel Jinga, Pites , ti
   88   89   90   91   92   93   94   95   96