Page 77 - RMGO 3
P. 77

Rezolvarea problemelor din num˘arul anterior                               77

                                   r                                         r
                       A              p(p − a)                                 p(p − b)
                                                                  0
                                                               0
            (p − a) cos   = (p − a)           . Analog, avem B N = (p − b)              s , i
                       2                 bc                                       ac
                          r
                             p(p − c)                               p(p − a)(p − b)(p − c)
                                                    0
                                                       0
                                                  0
              0
                 0
                                                                0
                                                             0
                                                          0
            C M = (p−c)             . Rezult˘a c˘a A P ·B N ·C M =                       ·
                               ab                                            abc
                                      S 3
            p                                h a h b h c
               p(p − a)(p − b)(p − c) =   =        .
                                      abc      8
            MGO 62. Fie x, y, z ∈ [0, 2] astfel ˆıncˆat xy + yz + zx + xyz = 4. Determinat ,i
                                          4 − xy   4 − yz    4 − zx
            valorile extreme ale expresiei       +        +        .
                                          4 + xy   4 + yz    4 + zx
                               Leonard Mihai Giugiuc, Romˆania s , i Michael Rozenberg, Israel
            Solut ,ia 1 (Anh Duy, Vietnam). Cu substitut , iile
                                      2 − 2a      2 − 2b      2 − 2c
                                  x =       , y =       , z =
                                       1 + a       1 + b       1 + c
                                                   P 4 − xy    P a + b
            avem a, b, c ∈ [0, 1], a + b + c = 1 s , i S =   =          . Demonstr˘am c˘a
                                                      4 + xy      1 + ab
                                          9   X   a + b
                                            ≤           ≤ 2.
                                          5       1 + ab
                       P a + b     P a + b
            Avem S =             ≤          = 2(a + b + c) = 2. Notˆand q = ab + bc + ca s , i
                          1 + ab        1
                                      9   r(q − 9r) + 3r(3q + 2) − (4q − 1)
            r = abc, obt , inem c˘a S =  +                                . Cum q − 9r =
                                                        2
                                      5           5(q + r + r + 1)
            (a + b + c)(ab + bc + ca) − 9abc ≥ 0 (conform Inegalit˘at ,ii mediilor), rezult˘a c˘a
                 9   3r(3q + 2) − (4q − 1)
                                                                  2
            S ≥    +                      ,  (1). Avem (a + b + c) ≥ 3(ab + bc + ca), deci
                              2
                 5     5(q + r + r + 1)
                 1                     1                          9            1        1
            q ≤   . Cazul 1. 0 ≤ q ≤    . Din (1) rezult˘a c˘a S ≥  . Cazul 2.   < q ≤   .
                 3                     4                          5            4        3
                                                            2
                       2
                   2
                            2 2
            Din (a + b + c ) + 6abc(a + b + c) ≥ (a + b + c) (ab + bc + ca) (Inegalitatea lui
            Schur pentru t = 2) rezult˘a 6r ≥ (1 − q)(4q − 1), prin urmare din (1) obt , inem
                 9   (1 − q)(4q − 1)(3q + 2) − 2(4q − 1)  9   q(4q − 1)(1 − 3q)   9
            S ≥    +                                   =   +                    ≥ .
                                                                      2
                                     2
                 5           10(q + r + r + 1)            5   10(q + r + r + 1)   5
            Solut ,ia 2 (Toang Huc Khein, software developer, Marea Britanie). Condit , iile
            xy + yz + zx + xyz = 4 s , i x, y, z > 0 implic˘a existent , a a trei variabile a, b, c > 0
            astfel ˆıncˆat
                                         2a         2b         2c
                                   x =       , y =      , z =
                                        b + c     c + a      a + b
                       a      b       b     c       c     a         a      b     c
            (deoarece      ·      +      ·      +      ·      + 2 ·     ·     ·      = 1).
                      b + c c + a   c + a a + b   a + b b + c      b + c c + a a + b
            Restrict , iile x, y, z ≤ 2 implic˘a a + b ≥ c, b + c ≥ a, c + a ≥ b. Astfel a, b s , i c sunt
            lungimile laturilor unui triunghi (posibil degenerat). Avem
                                  X  4 − xy    X     a(a + b + c)
                                            =                       .
                                     4 + xy       a(a + b + c) + 2bc
   72   73   74   75   76   77   78   79   80   81   82