Page 76 - RMGO 3
P. 76

76                                      Rezolvarea problemelor din num˘arul anterior

                                                                       2           2
            MGO 60. Aflat ,i a, b, c, d > 0, s , tiind c˘a a+b+c+d = 2 s , i  +          +
                                                                   2a + b + c  2b + c + d
                 2            2             1               2               1
                       +            =               +               +               .
             2c + d + a  2d + a + b   (a + b)(c + d)  (a + c)(b + d)  (a + d)(b + c)
                                                                   Florin St˘anescu, G˘aes , ti
                                                         x 2  y 2   (x + y) 2
            Solut ,ie. Utilizˆand Inegalitatea lui Bergstr¨om,  +  ≥       , unde z, t > 0,
                                                         z     t     z + t
                                            x    y            2        1        4
            cu egalitate dac˘a s , i numai dac˘a  =  , avem          =   ·              ≤
                                            z    t        2a + b + c   2 a + b + a + c

             1    1       1
                      +        , cu egalitate dac˘a s , i numai dac˘a b = c. Analog, obt , inem
             2  a + b   a + c

                 2       1     1      1          2        1    1       1          2
                       ≤          +        ,           ≤           +        ,           ≤
             2b + c + d  2   b + c   b + d   2c + d + a   2  c + a   c + d   2d + a + b

             1    1       1
                      +        . Adunˆand membru cu membru aceste inegalit˘at , i s , i utilizˆand
             2  d + a   d + b
                                                        2            2            2
            faptul c˘a a + b + c + d = 2 rezult˘a c˘a         +            +            +
                                                    2a + b + c   2b + c + d   2c + d + a

                 2         1    1       1           1       1       1     1       1
                        ≤           +         +         +         +           +         =
             2d + a + b    2   a + b   c + d      a + c   b + d     2   a + d   b + c
                  1                2               1
                          +               +               . Dar, conform ipotezei, aceast˘a
             (a + b)(c + d)  (a + c)(b + d)  (a + d)(b + c)
            inegalitate devine egalitate, deci s , i inegalit˘at , ile adunate devin egalit˘at , i. Deducem
                               1
            c˘a a = b = c = d = .
                               2



                                            Clasa a IX-a



            MGO 61. Se consider˘a triunghiul ABC s , i punctele M ∈ (AB), N ∈ (AC), P ∈
                                                                               0
                                                                           0
                                                                        0
            (BC) astfel ˆıncˆat AM = CP, AN = BP, BM = CN. Fie A , B , C mijloacele
                                                           0
                                                                  0
                                                               0
            segmentelor [BC], [AC], respectiv [AB], iar M , N , P mijloacele segmentelor
                                                        0
                                                          0
                                                                        0
                                                                     0
                                                              0
                                                                 0
            [NP], [MP], respectiv [MN]. Ar˘atat ,i c˘a A P · B N · C M =    h a h b h c  , unde
                                                                               8
            h a , h b , h c reprezint˘a lungimile ˆın˘alt ,imilor triunghiului ABC.
                                                        Mihai Florea Dumitrescu, Potcoava
            Solut ,ie. Notˆand BM = CN = x, AM = CP = y s , i AN = BP = z, avem
            y + z = a, x + z = b, x + y = c, deci x = p − a, y = p − b, z = p − c.
                  −−→     −−→   −−→    1 −−→    −→      1 −−→    −−→      1 −−→    −→



                    0
                      0
                             0
                                    0
            Avem P A = AA − AP =          AB + AC −        AM + AN =         AB + AC −
                                                        2                 2
                                       2
             1  p − b −−→    p − c −→       p − a −−→     p − a −→
                                                                                    0
                                                                                      0
                      · AB +      · AC   =        · AB +        · AC. Rezult˘a c˘a A P =
             2    c            b              2c            2b
                            r
                     p − a             2           2  2  −−→ −→      p − a √
               0
             −−→                1 −−→       1 −→
                 0
              P A =        ·    · AB  +   · AC  +       · AB · AC =       ·  2 + 2 cos A =
                       2       c           b          bc               2
   71   72   73   74   75   76   77   78   79   80   81