Page 104 - RMGO 2
P. 104

104                                     Rezolvarea problemelor din num˘arul anterior


            MGO 33. Fie s , irurile (x n ) n≥1 , (y n ) n≥1 s , i (z n ) n≥1 de numere reale pozitive,
                             x n+1          x 1 + x 2 + . . . + x n
            astfel ˆıncˆat lim    = 1, y n =                  s , i z n = max {x 1 , x 2 , . . . , x n },
                        n→∞ x n                     n
                                               y n+1            z n+1
            pentru orice n ≥ 1. Ar˘atat ,i c˘a lim  = 1 s , i lim    = 1.
                                          n→∞ y n          n→∞ z n
                                                        Mihai Florea Dumitrescu, Potcoava

                           y n+1   s n+1   n
            Solut ,ie. Avem     =       ·     , unde s n = x 1 + x 2 + . . . + x n , ∀n ≥ 1. S , irul
                            y n     s n  n + 1
            (s n ) este cresc˘ator, deci exist˘a lim s n = l, finit˘a sau +∞. Dac˘a limita l este finit˘a,
                                         n→∞
                                             s n+1   l
            atunci l ≥ s 1 = x 1 > 0, deci lim    =    = 1. Dac˘a l = +∞, atunci aplicˆand
                                        n→∞ s n      l
                                          s n+1        s n+2 − s n+1      x n+1
            Lema Stolz-Cesaro avem lim         = lim               = lim        = 1. Prin
                                     n→∞ s n      n→∞ s n+1 − s n    n→∞ x n
                                               y n+1        s n+1        n
            urmare, ˆın ambele cazuri avem lim       = lim       · lim       = 1 · 1 = 1.
                                          n→∞ y n      n→∞ s n    n→∞ n + 1
                Evident, z n+1 = max{z n , x n+1 }, ∀n ≥ 1. Dac˘a z n ≥ x n+1 , atunci z n+1 = z n ,
                 z n+1                                               z n+1   x n+1   x n+1
            deci      = 1. Dac˘a z n < x n+1 , atunci z n+1 = x n+1 s , i 1 <  =  ≤
                  z n                                                 z n     z n     x n
                                                                  z n+1            x n+1
            (deoarece, evident, z n ≥ x n ). Prin urmare, avem 1 ≤      ≤ max 1,         ,
                                                                   z n              x n
                                                              z n+1
            ∀n ≥ 1. Aplicˆand Criteriul cles , telui rezult˘a c˘a lim  = 1.
                                                         n→∞ z n
                Remarc˘am c˘a, ˆın ipotezele date, dac˘a t n = min {x 1 , x 2 , . . . , x n }, pentru orice

                                                               x n+1     t n+1
            n ≥ 1, atunci, procedˆand ca mai sus, avem min 1,         ≤       ≤ 1, ∀n ≥ 1,
                                                                x n       t n
                        t n+1
            deci s , i lim   = 1.
                   n→∞ t n
            MGO 34. Demonstrat ,i c˘a dac˘a matricele A, B, C ∈ M n (Q) verific˘a relat ,ia
                    2
            (B − C) = (A + B)(A + C), atunci det(AB − BA + CA − AC + CB − BC) = 0.
                                                                     George Mihai, Slatina

                                                  2
            Solut ,ie. Fie x 1 s , i x 2 r˘ad˘acinile ecuat , iei x −x−1 = 0, deci x 1 +x 2 = 1, x 1 x 2 = −1,
                       √
                   1 ±   5
            x 1,2 =       . Consider˘am matricele U = A + x 1 B + x 2 C s , i V = A + x 2 B + x 1 C.
                      2
                                    2
                          2
                               2
            Avem UV = A −B −C +BC +CB +x 1 (BA+AC +BC)+x 2 (AB +CA+CB).
                   2
                                                             2
                              2
                                                                   2
                                                 2
                        2
            Dar A − B − C + BC + CB = A − (B − C) = A − (A + B)(A + C) =
            −(BA+AC +BC), deci UV = (x 1 −1)(BA+AC +BC)+x 2 (AB +CA+CB) =
                                                                                      √
                                                                     √
            x 2 (AB+CA+CB−BA−AC−BC). Evident, det U = a+b 5 s , i det V = a−b 5,
                                                                2
                                                                      2
            cu a, b ∈ Q. Pe de o parte, det(UV ) = det U det V = a − 5b ∈ Q, iar pe de alt˘a
                                                                               n
            parte det(UV ) = det (x 2 (AB + CA + CB − BA − AC − BC)) = x det(AB +
                                                                               2      √
                                                   n
            CA + CB − BA − AC − BC). Cum x ∈ R \ Q (deoarece x           n  = c n ± d n 5,
                                                                         1,2
                                                   2
            cu c n , d n ∈ Q, iar dac˘a d n = 0 ar rezulta c˘a x 1 = ±x 2 , fals), conchidem c˘a
            det(AB + CA + CB − BA − AC − BC) = 0.
   99   100   101   102   103   104   105   106   107   108   109